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Abstract. We summarize our recent results on the phase diagram of QCD with Ny =24 1 quark flavors,
as a function of temperature T" and quark chemical potential p. Using staggered fermions, lattices with
temporal extent N; = 4, and the exact RHMC algorithm, we first determine the critical line in the quark
mass plane (m, 4, ms) where the finite-temperature transition at g = 0 is second order. We confirm that
the physical point lies on the crossover side of this line. Qur data are consistent with a tricritical point at
(mu,qa,ms) = (0,~ 500) MeV. Then, using an imaginary chemical potential, we determine in which direction
this second-order line moves as the chemical potential is turned on. Contrary to standard expectations,
we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is
inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put
on clarifying the translation of our results from lattice to physical units, and on discussing the apparent
contradiction of our findings with earlier lattice studies. Finally, we review related results obtained via
simulations at fixed baryon number via the canonical ensemble.

PACS. 12.38.Gc Lattice QCD calculations — 12.38.Mh Quark-gluon plasma

1 Introduction

In recent years, considerable efforts have been devoted to
the determination of the phase diagram of QCD at finite
temperature and density [1]. At zero chemical potential,
the nature of the quark hadron phase transition depends
on the quark masses m,, 4 and ms, and the qualitative ex-
pectations are summarized in fig. 1. In the limits of zero
and infinite quark masses (lower left and upper right cor-
ners), order parameters corresponding to the breaking of a
symmetry can be defined, and one finds numerically that
a first-order transition takes place at a finite temperature
T.. On the other hand, one observes an analytic crossover
at intermediate quark masses. Hence, each corner must be
surrounded by a region of first-order transition, bounded
by a second-order line as in fig. 1. The line in the heavy-
quark corner has been studied in [2]. Here, we want to
determine the chiral critical line.

Along both lines, the universality class has been nu-
merically determined to be that of the 3d Ising model.
With this knowledge at hand, a powerful observable to
determine the critical couplings is the Binder cumulant
By = (§X*)/(6X?)%, where X = X — (X), and we take
for X the u,d quark condensate 7). In the infinite volume
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Fig. 1. Schematic phase transition behaviour of Ny = 2 +1
flavor QCD for different choices of quark masses (m.,q4, ms), at
=0 (from [1]).

limit and when evaluated at the (pseudo-)critical temper-
ature, this observable takes on the values 1 or 3 when
the phase change corresponds to a first-order transition
or a crossover, respectively, while it assumes the value
B4 = 1.604 characteristic for the 3d Ising universality class
on a second-order critical point.
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Fig. 2. Upper panel: the chiral critical surface in the case of positive (left) and negative (right) curvature. If the physical point
is in the crossover region for p = 0, a finite p phase transition will only arise in the scenario (left) with positive curvature, where
the first-order region expands with |u|. Note that for heavy quarks, the first-order region shrinks with |u| (right) [5]. Lower
panel: phase diagrams for fixed quark mass (here Ny = 3) corresponding to the two scenarios depicted above.

On lattices 8,122 and 16° x 4, we thus estimate the
critical couplings as those for which By = 1.604. For
each mass point (m,, 4, ms), we accumulate at least 200k
RHMC trajectories, and interpolate among 4 or more my, g
values to find the critical m,, 4 mass m¢ at previously fixed
mg. We obtain the set of points in fig. 4, left.

We then consider the effect of a baryonic chemical po-
tential, up = 3u. As a function of quark chemical poten-
tial u, represented vertically in fig. 2, the critical line deter-
mined at u = 0 now spans a surface. The standard expec-
tation for the QCD phase diagram is depicted in fig. 2 left.
The first-order region expands as pu is turned on, so that
the physical point, initially in the crossover region, even-
tually belongs to the critical surface. At that chemical po-
tential ug, the transition is second order: that is the QCD
critical point. Increasing p further makes the transition
first order. Drawn in the (7', u)-plane, this corresponds to
the standard expected diagram fig. 2, left. A completely
different scenario arises if instead the first-order region
shrinks as p is turned on. In that case (fig. 2, right), the
physical point remains in the crossover region for any pu.

Since the phenomenologically interesting question is
whether a QCD critical point (ug,Tr) exists at small
pe, be/Te S 1, d.e. for up < 500 MeV, this question can
be addressed by simulations with an imaginary chemical
potential, followed by an analytic continuation based on

a Taylor expansion [3,4]. The benefit of using an imagi-
nary chemical potential is that the fermion determinant
is positive in this case, hence there is no sign problem
and simulations are technically equally feasible as those
for u = 0. Using this approach, we determine the cur-
vature %M:O of the critical surface at ;4 = 0. We find
that it is negative, so that the first-order region shrinks
as in fig. 2, right. Note that in the opposite corner, the
first-order region also shrinks [5].

Section 2 tests our methodology in the Ny = 3 case.
Section 3 describes the Ny = 2 + 1 study. Section 4 com-
pares our results with earlier lattice studies and discusses
the various limitations of our approach.

2Nf:3

We first check our methodology in the case of 3 degenerate
flavors. This is basically a repeat of ref. [6], this time using
the RHMC algorithm [7] instead of the R algorithm.

The RHMC algorithm eliminates the stepsize error of
the R algorithm, which differs in magnitude in the chirally
symmetric and broken phases [8]. As a result, the value of
mC(u = 0) is considerably different: (am®(u = 0)) moves
from 0.033(1) (R algorithm) [6] to 0.0260(5) (see fig. 3,
left). We have checked, by performing zero-temperature
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Fig. 3. Left: Bs(am, apur) for different imaginary chemical potentials. Right: one-sigma error band for the critical mass am®(apr)

resulting from a linear fit.

simulations at this quark mass, that this is not a simple
renormalization effect, but that the physical ratio m, /T,
is lowered by about 10%. Therefore, an exact algorithm
appears mandatory for the study of the Ny = 2 + 1 crit-
ical line. Moreover, RHMC turns out to be vastly more
efficient, by up to a factor 20 in our case for the smallest
quark masses [9].

We now turn on an imaginary chemical potential y =
ipy, and for each p; monitor the Binder cumulant By as a
function of the quark mass. Our results are summarized in
fig. 3, left. The chemical potential has almost no influence
on By. A lowest-order fit, linear in am and (au)?, gives
the error band in fig. 3, right, corresponding to

am®(au) = 0.0270(5) — 0.0024(160)(ap)?. (1)

Care must be taken for the conversion to physical
units. The crucial point is that, as we increase the chem-
ical potential 7, we tune the gauge coupling 5 upwards
to maintain criticality, so that a(8) decreases: our ob-
servation that am®(u;) = const does not mean that
mS(uy) & const, but that m°(u;) increases with pj, or
decreases with a real chemical potential p. If we express

amc(u) -1 a,,nccll(o) (a'u)Q + ..., (2)

:1+01(WLT)2+... 3)

then ¢; and ¢} are related by

§ dT.(m, p)

A 1
‘= N_t2 amc(O) (Tc(m7 :u) d(/,t/ﬂ'T)Q ) pn=0 ’ (4)

where m = m®(u) in the second term. Writing the transi-
tion temperature as

TC(m, H’)
Te(mg, 0)

Cc
m —mg

=1+ A4
+ 7T

one obtains

72
—(B+Z 9 _\(1-4
“ ( *Nfamcm))(

¢} and ;n—é are both small, so that ¢; is nearly equal to B.
Estimates of B and A can be obtained by converting our
result for the pseudo-critical gauge coupling

Bolam,ap) = 5.1369(3) + 1.94(3) (am — amyg)
+0.781(7) (ap)? (7)

to physical units. Using the 2-loop S-function gives A =
2.111(17), B = —0.667(6) so that finally

me(p) _ A%
() = 107 (ﬁ) I ®)

The error above is conservative and includes the uncer-
tainty from using different fitting forms (see [10], table 2).
The main source of systematic error comes from using the
2-loop B-function to obtain B. The non-perturbative (-
function varies more steeply and may increase A and B,
in magnitude, by up to a factor 2. This will make ¢; more
negative.

We thus have clear evidence that, in the Ny = 3 theory
on an N; = 4 lattice, the region of first-order transitions
shrinks as a baryon chemical potential is turned on, and
the “exotic scenario” of fig. 2, right, is the correct one.
This result is further supported by recent simulations of
the same theory, under an isospin chemical potential [11].

3Ng=2+1

We now proceed to the non-degenerate case. First, at
u = 0, we map out the line of second-order transitions
in the (amy, 4, ams)-plane. Our results, shown fig. 4, left,
are in qualitative agreement with expectations fig. 1. In
particular, they are consistent with the possible existence
of a tricritical point (m,4 = 0,ms = mir®). Using its
known, Gaussian exponents, our data favor (blue on-line
line in fig. 4, left) a heavy m!rc ~ 2.8T..

A more immediate issue is whether the QCD physi-
cal point lies on the crossover side of the critical line as
expected. For that purpose, we have performed spectrum
calculations at T' ~ 0, at the parameters corresponding to
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Fig. 4. Left: the chiral critical line in the bare quark mass plane at p = 0. Ny = 3 is shown by the thick solid line. Also shown

are the physical point according to [12], and a fit corresponding to a tricritical point mj
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Fig. 5. Left: effect of keeping the quark mass fixed in lattice units in [12]. Right: comparison at finite u between the Ny =241

and the Ny = 2 theory considered in [16].

the horizontal arrow in fig. 4, left (am, ¢ = 0.005,ams =
0.25,4 = 5.1857). They show that my is approximately
tuned to its physical value (%_I: s |phys), while the
pion is lighter than in QCD (Z—: = 0.148(2) < 0.18). This
confirms that the physical point lies on the right of the
critical line, i.e. in the crossover region'. This conclusion
has been confirmed by very recent calculations on finer
lattices [13]. Also, we find T, to vary little along the crit-
ical line, in accordance with model calculations [14].

~

We now couple an imaginary chemical potential au; =
0.2 to the two light flavors, and measure the change in the
critical mass am,, q as in the Ny = 3 case. Figure 4, right,
shows the same trend as for Ny = 3: the critical mass is
constant or slightly increasing, in lattice units. The con-
version to physical units proceeds as in eqs. (2)—(8). Since
the critical gauge coupling fo(auy) increases with puy, the
coefficient B, which is the dominant contribution to ¢, is
negative. Together with a very small or slightly negative
value for ¢, it implies again that the first-order region
shrinks as the baryon chemical potential is turned on, and
the “exotic scenario” of fig. 2, right, is the correct one.

! In fact, our estimate of the lattice parameters correspond-
ing to the physical point is consistent with that of Fodor and
Katz using the same action, but the R algorithm [12].

This statement comes with several caveats: i) our lat-
tice is very coarse (a ~ 0.3fm); ii) as we consider lighter
My, d, our box becomes small (m,L ~ 1.7 for the worst
case); iii) we use “rooting” of the staggered determinant
to simulate 1 and 2 flavors, albeit our measure is positive
with an imaginary u, so that we avoid the pitfalls of [15].

4 Discussion

Our results appear in qualitative contradiction with those
of Fodor and Katz [12] and of Gavai and Gupta [16], which
both conclude for the existence of a critical point (g, Tk)
at small chemical potential ug/Tr < 1. Let us consider
the reasons for such disagreement.

— Fodor and Katz obtain Monte Carlo results at g =
Be, v = 0, and perform a double reweighting in (8, u)
along the pseudo-critical line §.(au). By construction, this
reweighting is performed at a quark mass fixed in lattice
UNILS: AMy,q = mT"C’d = const. Since the critical tempera-
ture T, decreases as they turn on u, so does their quark
mass. This decrease of the quark mass pushes the transi-
tion towards first order, which might be the reason why
they find a critical point at small u. This effect is illus-
trated in the sketch fig. 5, left, where the bent trajectory
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Fig. 6. (Colour on-line) Left: the Monte Carlo ensemble produces a distribution of baryon densities p (red) centered about
p =0, to be reweighted according to the desired, target ensemble (green) centered about p > 0. Very little large-p information is
available. Right: by chosing the target ensemble to be canonical, one alleviates the need for large-p information, thus increasing

the reliability of the results.

a la Fodor and Katz intersects the critical surface, while
the vertical line of constant physics does not.

Put another way, Fodor and Katz measure the ana-
logue of eq. (2) instead of (3). From their fig. 1 (ref. [12]),
the coefficient ¢ which one would extract would be es-
sentially zero like ours. As in our case, the variation of
T. with p makes a dominant contribution, which might
change the results qualitatively.

— Gavai and Gupta try to infer the location of the crit-
ical point by estimating the radius of convergence of the
Taylor expansion of the free energy in (u/7T)?. Regardless
of the systematic error attached to such an estimate when
only 4 Taylor coefficients are available, we want to point
out that they consider a theory without strange quark, i.e.
Ny = 2 only. The (i, T) phase diagram of such a theory
is qualitatively different from that of Ny = 2 + 1 QCD.
At p = 0, the order of the finite-temperature transition as
My,q — 0 is not settled [17]. Assuming a second-order
O(4) transition, one expects then a tricritical point at
(Muy,a = 0,u = p™®), beyond which a non-zero critical
mass my, ;(p) can be defined, as sketched in fig. 5, right.
The quantitative relevance of results, even accurate, for
this Ny = 2 theory to QCD is unclear to us.

Therefore, we find no inconsistency between our
results and those above. We conclude that the existence
of a critical point (ug,Tr) in QCD at small chemical
potential pp/Tr < 1 is an open question. Qur numerical
evidence, with the caveats mentioned in sect. 3, is that
the curvature of the critical surface is as illustrated
fig. 2, right. Our main systematic error comes from our
coarse lattice spacing a ~ 0.3fm [18]. If confirmed on a
finer lattice, the implications of our finding would be as
follows. In the region where a leading Taylor expansion of
the critical surface is a good approximation, i.e. pu/T < 1,
corresponding to the experimentally accessible regime,
no critical point exists which is analytically connected to
i = 0. Of course, we cannot exclude that the QCD phase
diagram is more complex, and partly inaccessible to our
imaginary p + Taylor expansion strategy. In particular

this leaves open the possibility of a critical point not
analytically connected to the one at p = 0.

5 Canonical approach

The canonical ensemble, where the baryon density is fixed
instead of the conjugate chemical potential, provides a po-
tentially fruitful approach to the study of QCD at finite
density. Its theoretical advantage is illustrated in fig. 6.
The ensemble of configurations sampled from the Monte
Carlo ensemble, whatever this ensemble is chosen to be,
has a distribution of baryon densities p centered around
p = 0, illustrated by the Gaussian-like red on-line curve
in fig. 6. By reweighting with a factor oc exp(u/TVp),
one attempts to obtain information on the target, pu # 0
ensemble, which has a distribution of baryon densities il-
lustrated by the Gaussian-like green on-line curve, cen-
tered around p # 0. When the volume V is increased, the
red and green on-line curves both become narrower Gaus-
sians, and an overlap problem appears: the Monte Carlo
ensemble contains very little information relevant to the
target ensemble, and correct results can only be main-
tained by increasing statistics exponentially with V. The
problem is particularly acute for the large-density tail of
the target ensemble. By changing the target ensemble to
canonical, i.e. with a fixed baryon density as illustrated
by the blue on-line delta-function in fig. 6, one eliminates
the need to include high-density information. Thus, while
the canonical ensemble does not provide a cure to the sign
and overlap problems, there is some reason to expect that
it delivers more reliable results than the usual reweighting
to the grand-canonical ensemble, up to larger volumes or
average baryon densities.

Reweighting of the 4 = 0 ensemble to the canonical
one has been performed in ref. [19], in a pilot project with
Ny = 4 degenerate flavors of staggered quarks, on a small
6% x 4 lattice. A selection of results is presented in fig. 7.

Figure 7 (left) shows, as a function of the baryon
density, the derivative of the free-energy density with
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Fig. 7. Results from the canonical-ensemble approach [19]. Left: equivalent chemical potential versus baryon density. Right:
boundaries of the coexistence region, obtained from the left panel by a Maxwell construction.

respect to the baryon density. This quantity is equal to
the baryon chemical potential, in the saddle point ap-
proximation which is exact in the thermodynamic limit.
Note that reliable results are obtained for systems con-
taining up to 30 baryons, and chemical potentials up
to p/T ~ 2. For the chosen quark mass m,/T = 0.2,
a first-order transition takes place between the confin-
ing and the plasma phases. The transition is visible in
the S-shape of the data, indicating multiple solutions
for the baryon density at a given chemical potential. A
Maxwell construction reveals the critical chemical poten-
tial p.(T), and the limits p; (T), p2(T") of the coexistence
region. The latter are shown in fig. 7 (right) as a function
of temperature. One sees that the pure hadronic phase
has a maximum baryon density of about 0.5 baryon/fm?,
which is not too far from the real-world nuclear density
of 0.17 baryon/fm?®. The minimum density in the plasma
phase is about 6 quarks/fm?.

By choosing a heavier quark mass, one can ensure
that the p = 0 transition becomes a crossover. If a critical
point exists at some finite p = ppg, the transition will
become first-order for u > pg, which will be evidenced
by the appearance of an S-shaped curve in fig. 7 (left) for
u > pp only. While these simulations are still performed
on a small volume, which causes important systematic
errors in the estimate of the critical couplings and of
the order of the phase transition, comparison with the
imaginary-p approach of the previous sections, and with
the reweighting approach of Fodor and Katz [12] will
provide a valuable crosscheck.

References

1. E. Laermann, O. Philipsen, Annu. Rev. Nucl. Part. Sci.
53, 163 (2003) [arXiv:hep-ph/0303042]; O. Philipsen,
PoS (LAT2005) 016 (2006); PoS (JHW2005) 012 (2006)
[arXiv:hep-lat /05100677).

2.

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

P. Hasenfratz, F. Karsch, I.O. Stamatescu, Phys. Lett.
B 133, 221 (1983); C. Alexandrou et al., Phys. Rev. D
60, 034504 (1999) [arXiv:hep-lat/9811028]; A. Dumitru,
D. Roder, J. Ruppert, Phys. Rev. D 70, 074001 (2004)
[arXiv:hep-ph/0311119].

P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290
(2002) [arXiv:hep-lat/0205016].

M. D’Elia, M.P. Lombardo, Phys. Rev. D 67, 014505
(2003) [arXiv:hep-lat/0209146].

S. Kim et al,, PoS (LAT2005) 166 (2006) [arXiv:hep-
lat/0510069].

P. de Forcrand, O. Philipsen, Nucl. Phys. B 673, 170
(2003) [arXiv:hep-lat/0307020].

M.A. Clark et al., Nucl. Phys. Proc. Suppl. 140, 835 (2005)
[arXiv:hep-lat /0409133].

J.B. Kogut, D.K. Sinclair, arXiv:hep-lat/0504003.

M.A. Clark et al., PoS (LAT2005) 115 (2006) [arXiv:hep-
lat/0510004].

P. de Forcrand, O. Philipsen, arXiv:hep-lat/0607017.
D.K. Sinclair, J.B. Kogut, arXiv:hep-lat/0609041.

Z. Fodor, S.D. Katz, JHEP 0404, 050 (2004) [arXiv:hep-
lat/0402006].

Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo,
Nature 443, 675 (2006).

Z. Szep, PoS (JHW2005)
ph/0512241].

M. Golterman, Y. Shamir, B. Svetitsky, Phys. Rev. D 74,
071501 (2006) [arXiv:hep-lat/0602026].

R.V. Gavai, S. Gupta, Phys. Rev. D 71, 114014 (2005)
[arXiv:hep-lat/0412035].

J.B. Kogut, D.K. Sinclair, Phys. Rev. D 73, 074512
(2006) [arXiv:hep-lat/0603021]; M. D’Elia, A. Di Giacomo,
C. Pica, Phys. Rev. D 72, 114510 (2005) [arXiv:hep-
lat /0503030].

F. Karsch et al., Nucl. Phys. Proc. Suppl. 129, 614 (2004)
[arXiv:hep-lat/0309116].

P. de Forcrand, S. Kratochvila, PoS (LAT2005) 167 (2006)
[arXiv:hep-lat/0509143]; Nucl. Phys. Proc. Suppl. 153, 62
(2006) [arXiv:hep-lat/0602024].

017 (2006) [arXiv:hep-



